
 

• Human segmentations contain regions larger 
than those produced by a ddCRP with a = 1. 

• Two alternatives: increase a, or introduce a 
hierarchy, which groups regions into larger ones. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• The hierarchical model produces more human-
like partitions, by avoiding isolated super-pixels. 

• It extends the traditional Chinese restaurant 
franchise representation of the HDP by modeling 
each restaurant with a ddCRP instead of a CRP. 

 

• Benchmarked on a subset of Oliva and 
Torralba’s natural scene category dataset. 
100 images were chosen at random from 
each of the eight scene categories. 
 

 

 

 

 

 

 

 

 

 

• Compared various proposed ddCRP models 
to normalized cuts (spectral clustering), 
mean shift (classical kernel density estimate), 
and spatially dependent Pitman-Yor 
processes (via Gaussian processes, pydist20). 

 

 

 

 

 

Spatial ddCRP prior 

• Spatial distance between super-pixels is used to 
define a prior over image partitions. 

• Distance between two super-pixels is the number 
of hops needed to reach one from the other. 

• The decay function used is  

• Setting a = 1, super-pixels can only directly 
connect to neighboring super-pixels. This 
guarantees spatially connected segments.  

 

 

Hierarchical region level ddCRP 
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• Mixture components are associated 
with multinomial distributions over the 
color and texture histograms: 
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• An image is a collection of  ≈1000  
pre-computed super-pixels. 

• Super-pixels are described by stacked 
color and texture histograms of 
constituent pixels. 

• Color is represented by a 120-bin HSV 
color space, and texture by a 128-bin 
texton histogram. 
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• A mixture model with a spatial Bayesian 
nonparametric prior. 

 

 

 

 

• Likelihood depends on all super-pixels in the 
same region, not just the same segment.  

• Region assignments need to be re-sampled 
according to: 
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Image Segmentation 

• Split images into “homogeneous”  
regions/segments/clusters. 

• Develop a statistical model that 
automatically infers an appropriate 
number of segments for each image, and 
handles segments of widely varying sizes. 
 

 

 

 

 

Goals 

• We explore the spatial distance dependent 
Chinese restaurant process as a consistent 
prior over spatial image partitions. 

• We develop a hierarchical version, and 
demonstrate its ability to model  
human-like segmentations.  

• We perform controlled comparisons 
against other recent Bayesian 
nonparametric models. 
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Quantitative model comparisons, and example segmentations by the hierarchical region-level ddCRP 

• The links determine the partition. Two 
customers belong to the same component 
if they are reachable. 

• If each customer is allowed to connect to 
all preceding customers in some order, the 
Chinese restaurant process is recovered. 

 

 

• The ddCRP extends the traditional Chinese 
restaurant process (CRP). It prefers placing 
data instances closer in an “external”, 
sense in the same cluster. 

• Each customer (data instance) links to 
others with probability proportional to the 
distance between them: 
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• For each customer, sample customer 
assignments  

 

    This determines the  table assignments  

• For each table t, sample region assignments  

 

• For each region, sample parameters  
• For each super-pixel, independently sample 

observed data 
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• Likelihood decomposes as: 
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• The sampler does not assume exchangeability. 

• Split and merge behavior leads to fast mixing: 

• Update equation: 
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Top left: Average segmentation performance across the eight categories. Right: Dark pixels indicate pairs that are statistically indistinguishable.  
Bottom left: Scatter plots comparing the pydist20 and rddCRP methods on the Mountain and Street scene categories. Right: Example segmentations produced by the rddCRP. 


