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Model Selection
• Linearly separable data generated from a 2-2-1 

network with known weights.
• Non centered HS-BNN (2-15-1, 2-100-1) recovers the 

correct structure.

Predictive Performance

Faster Training
• Variational parameter tying leads to faster training and 

lower storage requirements.

Inverse Gamma Parameterization

• Black box variational inference with reparameterization
gradients.

• Factorized approximation in the reparameterized space

• Two variants:

• Factorized approximation in non-centered space, 
couples weights and scales,

• Learning alternates between gradient updates and 
fixed point updates.

• Bayesian NNs with large capacity & insufficient 
data can underfit, have large predictive variances.

• We develop BNNs with group Horseshoe priors to 
prune away additional capacity.

• Utilize alternate parameterizations necessary for 
effective inference.

• Develop variants that nearly halve training time 
and storage requirements

full tied 
less memory; faster training; 

* BNNs have unit normal prior on weights, all models have              
Gaussian output noise: 
* Thirty random inits, highest ELBO solution is visualized. 


