Bayesian Nonparametric Discovery of Layers and Parts from Scenes and Objects

Soumya Ghosh

Advisor: Erik Sudderth
Committee: Michael Black and James Hays

$$
\begin{aligned}
& \text { 的鰂迷道 }
\end{aligned}
$$

Model Desiderata

- Automatic model selection - adapt to variability in image/video/object complexity
- Manage uncertainty - retain a distribution over possible explanations
- Model spatial and temporal correlations
- Learn from human explanations

Adapting to complexity:

 Distributions over partitions
Λ_{1}
Λ_{2}

Λ_{3}

$$
\Lambda^{*} \sim p(\Lambda \mid \text { Data })
$$

Spatially Coupled PY Processes

Model Long Range Spatial Correlations

Ghosh \& Sudderth, CVPR 2012 Sudderth \& Jordan, NIPS 2008

Generative Samples

Samples from a Potts Markov Random Field (MRF) model:

Talk Outline

- Distance dependent partitions
- Parts from articulated 3D objects
- Hierarchical distance dependent partitions
- Activity discovery from MoCap data
- Learning distance dependent models
- Image and video segmentation

A distribution over partitions: Chinese Restaurant Process

$\sum z(c)$

> Customers = Data Instances
> Tables $=$ Components

Probability of a customer joining a table $\propto \begin{cases}n_{k} & \text { if } k \text { is an existing table } \\ \alpha & k \text { is a new table }\end{cases}$

Distance dependent Chinese Restaurant Process (ddCRP)

$\sum z(c)$

Customers = Data Instances
Tables = Components

Blei \& Frazier, JMLR 20II

Models for heterogeneous data
 Captures dependencies

Models for heterogeneous data
 Captures dependencies

Models for heterogeneous data
 Captures dependencies

Λ

$$
\begin{gathered}
\phi_{m} \sim H(\lambda), \forall m \in \Lambda \\
x_{i} \sim \phi_{m}, \forall i \in m
\end{gathered}
$$

Talk Outline

- Distance dependent partitions
- Parts from articulated 3D objects
- Hierarchical distance dependent partitions
- Activity discovery from MoCap data
- Learning distance dependent models
- Image and video segmentation

Parts from Deformations

Discovering Parts from Deformations:

Big Picture

- Cluster: Mesh faces.
- Prior: over the space of plausible mesh partitions.
- Likelihood: Given segmentation into parts, model how multiple bodies deform across many poses.
- Posterior: Explored through MCMC.

ddCRP Prior over Mesh Partitions

$$
\begin{aligned}
& m \neq n \\
& m=n
\end{aligned}
$$

- Mesh faces are only allowed to link to neighboring faces

$$
A_{m n}=\mathbf{1}\left[d_{m n} \leq 1\right]
$$

Prior over plausible partitions

Desirable

$p\left(Z_{2}\right)=0$
Avoid: Noisy Parts

Avoid: Disconnected Parts

Modeling Part Deformations

Matrix Normal Inverse Wishart:

$$
\begin{aligned}
\Sigma & \sim \mathcal{I V} \mathcal{W}\left(n_{0}, S_{0}\right) \\
A \mid \Sigma & \sim \mathcal{M N}(M, \Sigma, K)
\end{aligned}
$$

where $A \in \mathbb{R}^{3 \times 4}$ is an affine transformation.

$$
A^{1} \ldots A^{5} \sim \mathcal{M N \mathcal { N } \mathcal { W } (.)}
$$

Generative Affine Likelihoods

Marginal Affine Likelihoods

For each part and pose combination analytically marginalize over all possible affine transformations

$$
p\left(Y_{j k} \mid X_{j k}\right)=\iint_{\substack{\text { Marginal Likelihood }}} p\left(Y_{j k}, A_{j k}, \Sigma_{j k} \mid X_{j k}\right) d A_{j k}, d \Sigma_{j k}
$$

Bayesian Model Selection:

- Improper merges have low marginal likelihoods
- Improper splits are "suspicious coincidences" and end up with lower marginal likelihoods

Human Bodies in Motion

- 56 Aligned scans from two human subjects
- Wide variability in poses, limited variability in body shapes

Subject 2

Ghosh et al., NIPS 2012

Visual Comparisons

Ghosh et al., NIPS 2012

Quantitative Evaluation

Measure error in predicted motion for the candidate segmentations

Large Scale Studies

1732 meshes, 78 subjects, ~22,000 mesh faces Wide variability in both body shapes and poses.

Segmented Bodies

Computer generated meshes

Inference through Gibbs Sampling

Collapsed Sampler:
Only need to sample links, other random variables are analytically marginalized out.

Customers $=$ Mesh Faces
Tables = Object Parts

Table structure

Segmentation

Local changes in the link structure lead to large changes in the partition structure

Talk Outline

- Distance dependent partitions
- Parts from articulated 3D objects
- Hierarchical distance dependent partitions
- Activity discovery from MoCap data
- Learning distance dependent models
- Image and video segmentation

Hierarchical Distance Dependent Partitions

Model affinities between both data points and latent clusters.

Hierarchical ddCRP

Group 2

Hierarchical ddCRP

Hierarchical ddCRP

Activity Recognition

A: JumpJack

G: SideReach

H: Box

Fox et al., AOAS, 2014 mocap.cs.cmu.edu

Hierarchical Auto Regressive Mixtures

Sequence specific
links

- Sequence specific ddCRP models:

$$
p\left(c_{g i}=g j \mid \alpha_{g}, A^{g}\right) \propto \begin{cases}\exp \left(-\frac{(i-j)}{N_{g}^{\gamma}}\right) & i>j \\ 0 & i<j \\ 1 & i=j\end{cases}
$$

- Global CRP across sequences:

$$
\Lambda_{0} \sim \operatorname{CRP}\left(T(\mathbf{c}), \alpha_{0}\right)
$$

- Autoregressive likelihoods:

$$
\begin{aligned}
& x_{g t}=B_{m} x_{g t-1}+\epsilon_{m} \\
& B_{m}, \epsilon_{m} \sim H(\lambda)
\end{aligned}
$$

Discovered Activities

Examples of activities discovered by hddCRP

External Model Validation

15 independent MCMC chains

Inference

- More involved.
- No simple Gibbs sampler, need to resort to Metropolis Hastings.
- Nonetheless "efficient" MH samplers can be crafted.

Ghosh et al., UAI, 2014

Summary

Articulated object segmentation through ddCRP mixtures

Activity discovery via hierarchical distance dependent models

Talk Outline

- Distance dependent partitions
- Parts from articulated 3D objects
- Hierarchical distance dependent partitions
- Activity discovery from MoCap data
- Learning distance dependent models
- Image and video segmentation

Feature Augmented Models

$$
p\left(c_{i}=j \mid A\right) \propto A_{i j}
$$

$$
A_{i j}=f\left(w_{c}^{T} \theta_{i j}^{c}\right)
$$

Latent variables
governing contribution
of features

Learning From Partitions

- Moderate sized databases of partitions available for image and video collections.
- Uncertainty in labeled partitions
- Partitions are observed, but links are not.

$$
Y=\left\{y_{1} \ldots y_{D}\right\}
$$

Approximate Bayesian Computation

- Noisy partitions - human interpretations vary
- Appropriate noise model? Unclear, $A B C$ instead
- Likelihood free inference:
- Match "interesting" model statistic with observed data statistic

Marin et al., Stat Comput, 2012

Auxiliary Training Model

$$
\begin{gathered}
p\left(\mathbf{c}, w_{c}, Y\right) \propto p\left(w_{c}\right) \prod_{d=1}^{D} p\left(c_{d} \mid w_{c}\right) \mathbf{1}\left(z\left(\mathbf{c}_{d}\right), y_{d}\right) \\
\mathbf{1}\left(y_{a}, y_{b}\right)=\left\{\begin{array}{l}
1 \text { if } \Delta\left(y_{a}, y_{b}\right)<\epsilon, \\
0 \text { otherwise }
\end{array}\right.
\end{gathered}
$$

Probability restricted to partitions close to training data.

Marin et al., Stat Comput, 2012

Loss Aware Model

- Notion of closeness captured through a task specific loss function:

$$
\Delta\left(y_{a}, y_{b}\right)=1-\operatorname{RI}\left(y_{a}, y_{b}\right)
$$

- Marginalize over the exponentially large space of latent links using MCMC
- Efficient ABC variant for sampling from the auxiliary training model

Talk Outline

- Distance dependent partitions
- Parts from articulated 3D objects
- Hierarchical distance dependent partitions
- Activity discovery from MoCap data
- Learning distance dependent models
- Image and video segmentation

Image Segmentation

Generative features:

$$
\begin{gathered}
\theta_{i j}=\left\{\operatorname{row}_{i}-\operatorname{row}_{j}\right. \\
\left.\operatorname{col}_{i}-\operatorname{col}_{j}\right\}
\end{gathered}
$$

Learned Affinities

$$
\begin{aligned}
\theta_{i j}= & \left\{\operatorname{row}_{i}-\operatorname{row}_{j},\right. \\
& \left.\operatorname{col}_{i}-\operatorname{col}_{j}, \text { edge }_{i j}\right\}
\end{aligned}
$$

Conditional features:

Image Representation

Each super-pixel is described through histograms (~120 bin) of color and texture

Eight Natural Scene Category Dataset (LabelMe)

400 train and 800 test images
Oliva and Torralba, 200I

Samples from learned models

Monte Carlo Statistics

Statistics from 10,000 partitions sampled from generative affinities

Qualitative Results

Quantitative results

LabelMe
BSDS300

Learning in hierarchical models

- Auxiliary model for training now needs to account for links between clusters

$$
\begin{aligned}
p(\mathbf{c}, \mathbf{k}, w, Y) \propto p(w) \prod_{d=1}^{D} p\left(c_{d} \mid w_{c}\right) p\left(k_{d} \mid c_{d}, w_{k}\right) \mathbf{1}\left(z\left(\mathbf{c}_{d}, k_{d}\right), y_{d}\right) \\
w=\left\{w_{c}, w_{k}\right\}
\end{aligned}
$$

VSB 100-40 training videos

Video Segmentation

Features between superpixels:

$$
\begin{aligned}
\theta_{i j}= & \left\{\operatorname{row}_{i}-\operatorname{row}_{j},\right. \\
& \operatorname{col}_{i}-\operatorname{col}_{j}, \\
& \left.\operatorname{edge}_{i j}\right\}
\end{aligned}
$$

Features encoding similarity between segments:

$$
\begin{aligned}
\theta_{t s}^{k}=\{ & \psi\left(\text { size }_{t s},\right. \\
& \text { shape }_{t s}, \\
& \text { locations } \left.\left._{t s}\right)\right\}
\end{aligned}
$$

First Frame

First Frame

Last Frame

First Frame

Learning benefits hddCRP

Summary

hddCRP and ddCRP affinities can be effectively learned from labeled partitions

Thank You

Questions?

Statistics of Human Segments

- Human segment sizes follow power law behavior.

Sudderth \& Jordan, NIPS 2008

Spatial Coupling through Layers

Smooth Layers
Thresholded layer support

Image Partition

Sudderth \& Jordan, 2008 Ghosh \& Sudderth, 2012

Video Segmentation

- Features between superpixels - same as image segmentation.
- Features between segments - Shapes, sizes and positions.

$$
\begin{aligned}
& \theta_{t s}^{k}=\left[\vartheta_{t s}, \varphi_{t s}, \frac{\left|\zeta_{t}-\zeta_{s}\right|}{S}\right]^{T}, \\
& \vartheta_{t s}=\mathbf{1}_{[t, s \mid t \in g, s \in g]}\left[\frac{r_{t}-r_{s}}{R}, \frac{y_{t}-y_{s}}{Y}\right]^{T}, \\
& \varphi_{t s}=\mathbf{1}_{[t, s \mid t \in g+1, s \in g]}\left[\frac{\left|r_{t}-r_{s}\right|}{R}, \frac{\left|y_{t}-y_{s}\right|}{Y}, 1-\frac{t \cap s}{t \cup s}\right]^{T}
\end{aligned}
$$

MoCap Likelihoods

$$
\begin{aligned}
\Sigma_{z_{g i}} \mid n_{0}, S_{0} & \sim \operatorname{IW}\left(n_{0}, S_{0}\right), \\
B_{z_{g i} \mid} \mid M, \Sigma_{z_{g i}}, L & \sim \mathcal{M} \mathcal{N}\left(M, \Sigma_{z_{g i}}, L\right), \\
\epsilon_{z_{g i}} & \sim \mathcal{N}\left(0, \Sigma_{z_{g i}}\right),
\end{aligned}
$$

Moderate robustness to alignment errors

Inferred Segmentation

Segmentation with 20 Parts
Ghosh et al., NIPS 2012

Axial Symmetry

亶

Inference

Algorithm 1: Hierarchical ddCRP sampler
For data instance $i \in\left\{1 \ldots N_{G}\right\}$ jointly propose data and affected cluster links $\left\{\mathbf{c}^{*}, \mathbf{k}^{*}\right\} \longleftarrow \operatorname{ProposeLinks}\left(\mathbf{x}, \mathbf{k}, \mathbf{c}, \alpha_{1: G}, A^{1: G}, \alpha_{0}, A^{0}(\mathbf{c})\right)$.
Evaluate the proposal according to the Metropolis Hastings acceptance probability $a\left(\left\{\mathbf{c}^{*}, \mathbf{k}^{*}\right\},\{\mathbf{c}, \mathbf{k}\}\right)$. If the proposal is accepted, $\left\{\mathbf{c}^{*}, \mathbf{k}^{*}\right\}$ becomes the next state. If the proposal is rejected, the original configuration is retained.
For clusters $t \in T(\mathbf{c})$ resample cluster links via a Gibbs update: $k_{t} \sim p\left(k_{t} \mid \mathbf{k}_{-t}, \mathbf{c}, \mathbf{x}, \alpha_{0}, A^{0}(\mathbf{c})\right)$.

Stick Breaking to Layers

Sequential Binary Sampler:

$$
\begin{aligned}
b_{k i} & \sim \operatorname{Bernoulli}\left(v_{k}\right) \\
z_{i} & =\min \left\{k \mid b_{k i}=1\right\}
\end{aligned}
$$

- For each data instance i, go through the bins in order 1 through infinity.
- Toss a biased coin (with the probability of heads $=v _k$) for each bin .
- Pick the bin if the coin turns up heads

MCMC Learning

- Marginalize over the exponentially large space of latent links - MCMC samples
- Explore the marginal posterior of the auxiliary training model:

$$
\begin{gathered}
p\left(w_{c} \mid Y\right)=\sum_{\mathbf{c}} p\left(w_{c}, \mathbf{c} \mid Y\right) \approx \sum_{\mathbf{c}^{\left(s^{\prime}\right)}} p\left(w_{c}^{(s)}, \mathbf{c}^{\left(s^{\prime}\right)} \mid Y\right) \\
w_{c}^{s}, \mathbf{c}^{s} \sim p\left(w_{c}, \mathbf{c} \mid Y\right)
\end{gathered}
$$

Random walk Proposal: $w_{c}^{t+1} \sim \mathcal{N}\left(w_{c}^{t+1} \mid w_{c}^{t}\right.$, scale $\left.\times \mathbf{I}\right)$

Gibbs Step: $\quad c_{d i} \mid \mathbf{c}_{-d i}, w_{c}^{*}, Y \sim p\left(c_{d i} \mid w_{c}^{*}\right) \delta\left(z\left(\mathbf{c}_{\mathbf{d}}\right), y_{d}\right)$

Bayesian Nonparametric Priors

$$
\begin{aligned}
& G(\theta)=\sum_{k=1}^{\infty} \pi_{k} \delta_{\theta_{k}}(\theta) \\
& \sum_{k=1}^{\infty} \pi_{k}=1 \quad 0 \leq \pi_{k} \leq 1 \\
& \theta_{k} \sim \mathrm{H}(\lambda)
\end{aligned}
$$

Pitman-Yor Process

Power Law Behavior

$$
\begin{aligned}
& E\left[w_{k}\right]=\frac{1-\alpha_{a}}{\left(1+\alpha_{b}+(k-1) \alpha_{a}\right)} \\
& \pi_{k}=w_{k} \prod_{l=1}^{k-1}\left(1-w_{l}\right) \\
& w_{k} \sim \operatorname{Beta}\left(a_{k}, b_{k}\right) \\
& a_{k}=1-\alpha_{a} \\
& b_{k}=\alpha_{b}+k \alpha_{a} \\
& \alpha_{a}=0, \alpha_{b}=3 \\
& \alpha_{a}=0.5, \alpha_{b}=3 \\
& \alpha_{a}=0.9, \alpha_{b}=3
\end{aligned}
$$

Number of unique clusters in N observations: $O\left(\alpha_{b} N^{\alpha_{a}}\right)$
Expected size of sorted component $k: \quad O\left(k^{-\frac{1}{\alpha_{a}}}\right)$

Hierarchical ddCRP

Sample local links:

$$
p\left(c_{g i}=g j \mid \alpha_{g}, A^{g}\right) \propto \begin{cases}A_{i j}^{g} & i \neq j, \\ \alpha_{g} & i=j .\end{cases}
$$

$$
p\left(k_{t}=s \mid \alpha_{0}, A^{0}(\mathbf{c})\right) \propto \begin{cases}A_{t s}^{0}(\mathbf{c}) & t \neq s, \\ \alpha_{0} & t=s\end{cases}
$$

$$
\Lambda_{0}=z(\mathbf{k})
$$

Sample data generating parameters:

$$
\begin{gathered}
\phi_{m} \sim H(\lambda), \forall m \in \Lambda_{0} \\
x_{i} \sim \phi_{m}, \forall i \in m
\end{gathered}
$$

Group Specific

Partitions

Components shared across groups

Pitman-Yor Process

- The Pitman-Yor process defines a distribution on infinite discrete measures, or partitions

$$
\pi_{k}=w_{k} \prod_{l=1}^{k-1}\left(1-w_{l}\right) \quad w_{k} \sim \operatorname{Beta}\left(1-\alpha_{a}, \alpha_{b}+k \alpha_{a}\right)
$$

Stick Breaking Construction:

$$
\begin{gathered}
G(\theta)=\sum_{k=1}^{\infty} \pi_{k} \delta_{\theta_{k}}(\theta) \sim \mathrm{PY}(\alpha, H) \\
\theta_{k} \sim \mathrm{H}(\lambda)
\end{gathered}
$$

Sethuraman, 1994 Ishwaran and James, 2001

Video Segmentation

$$
\begin{aligned}
& P=\frac{\sum_{i=1}^{M}\left[\left\{\sum_{s \in \mathbb{S}} \max _{g \in \mathbb{G}_{i}}|s \cap g|\right\}-\max _{g \in \mathbb{G}_{i}}|g|\right]}{M|\mathbb{S}|-\sum_{i=1}^{M} \max _{g \in \mathbb{G}_{i}}|g|} \\
& R=\frac{\sum_{i=1}^{M} \sum_{g \in \mathbb{G}_{i}}\left\{\max _{s \in \mathbb{S}}|s \cap g|-1\right\}}{\sum_{i=1}^{M}\left\{\left|\mathbb{G}_{i}\right|-\Gamma_{\mathbb{G}_{i}}\right\}}
\end{aligned}
$$

VPR

Approximate Bayesian Computation

```
Algorithm 3 Likelihood-free MCMC sampler
    Use Algorithm 2 to get a realisation \(\left(\boldsymbol{\theta}^{(0)}, \mathbf{z}^{(0)}\right)\) from the
    ABC target distribution \(\pi_{\varepsilon}(\boldsymbol{\theta}, \mathbf{z} \mid \mathbf{y})\)
    for \(t=1\) to \(N\) do
    Generate \(\boldsymbol{\theta}^{\prime}\) from the Markov kernel \(q\left(\cdot \mid \boldsymbol{\theta}^{(t-1)}\right)\),
    Generate \(\mathbf{z}^{\prime}\) from the likelihood \(f\left(\cdot \mid \boldsymbol{\theta}^{\prime}\right)\),
    Generate \(u\) from \(\mathcal{U}_{[0,1]}\),
    if \(u \leq \frac{\pi\left(\boldsymbol{\theta}^{\prime}\right) q\left(\boldsymbol{\theta}^{(t-1)} \mid \boldsymbol{\theta}^{\prime}\right)}{\pi\left(\boldsymbol{\theta}^{(t-1)}\right) q\left(\boldsymbol{\theta}^{\prime} \mid \boldsymbol{\theta}^{(t-1)}\right)}\) and \(\rho\left\{\eta\left(\mathbf{z}^{\prime}\right), \eta(\mathbf{y})\right\} \leq \varepsilon\) then
        set \(\left(\boldsymbol{\theta}^{(t)}, \mathbf{z}^{(t)}\right)=\left(\boldsymbol{\theta}^{\prime}, \mathbf{z}^{\prime}\right)\)
        else
        \(\left(\boldsymbol{\theta}^{(t)}, \mathbf{z}^{(t)}\right)=\left(\boldsymbol{\theta}^{(t-1)}, \mathbf{z}^{(t-1)}\right)\),
        end if
    end for
```

