Bayesian Nonparametric Discovery of Layers and Parts from Scenes and Objects

Soumya Ghosh

Advisor: Erik Sudderth

Committee: Michael Black and James Hays

Human Segmentations

Model Desiderata

- Automatic model selection adapt to variability in image/video/object complexity
- Manage uncertainty retain a distribution over possible explanations
- Model spatial and temporal correlations
- Learn from human explanations

Adapting to complexity: Distributions over partitions

 $\Lambda^* \sim p(\Lambda \mid \text{Data})$

Spatially Coupled PY Processes **Model Long Range Spatial Correlations** u_{mk} u_{lk} v_k π_1 π_2 π_3 π_4 π_i π_2 π_3 π_{4} π_{i} π_2 π_3 π_4 u_{jk} **Power Law** u_{ik} ∞ \boldsymbol{U}_3 **Segment Sizes** α 'm U Z_{j} Z_i U x_i X_i X_i

Expected Layer Appearance Ghosh & Sudderth, CVPR 2012 Sudderth & Jordan, NIPS 2008

Generative Samples

Samples from a Potts Markov Random Field (MRF) model:

Talk Outline

- Distance dependent partitions
 - Parts from articulated 3D objects
- Hierarchical distance dependent partitions
 - Activity discovery from MoCap data
- Learning distance dependent models
 - Image and video segmentation

A distribution over partitions: Chinese Restaurant Process

Distance dependent Chinese Restaurant Process (ddCRP)

Blei & Frazier, JMLR 2011

Models for heterogeneous data Captures dependencies α $|x_i\rangle$ mComponents $\phi_m \sim H(\lambda), \forall m \in \Lambda$ $x_i \sim \phi_m, \forall i \in m$

Talk Outline

- Distance dependent partitions
 - Parts from articulated 3D objects
- Hierarchical distance dependent partitions
 - Activity discovery from MoCap data
- Learning distance dependent models
 - Image and video segmentation

Parts from Deformations

Discovering Parts from Deformations: Big Picture

- Cluster: Mesh faces.
- Prior: over the space of plausible mesh partitions.
- Likelihood: Given segmentation into parts, model how multiple bodies deform across many poses.
- **Posterior:** Explored through MCMC.

ddCRP Prior over Mesh Partitions

• Mesh faces are only allowed to link to neighboring faces

$$A_{mn} = \mathbf{1}[d_{mn} \le 1]$$

Prior over plausible partitions

Modeling Part Deformations

Matrix Normal Inverse Wishart:

 $\Sigma \sim \mathcal{IW}(n_0, S_0)$ $A \mid \Sigma \sim \mathcal{MN}(M, \Sigma, K)$

where $A \in \mathbb{R}^{3 \times 4}$ is an affine transformation.

 $A^1 \dots A^5 \sim \mathcal{MNIW}(.)$

Generative Affine Likelihoods

Marginal Affine Likelihoods

For each part and pose combination analytically marginalize over *all possible* affine transformations

$$p(Y_{jk} \mid X_{jk}) = \int p(Y_{jk}, A_{jk}, \Sigma_{jk} \mid X_{jk}) dA_{jk}, d\Sigma_{jk}$$

Marginal Likelihood

Bayesian Model Selection:

- Improper merges have low marginal likelihoods
- Improper splits are "suspicious coincidences" and end up with lower marginal likelihoods

Human Bodies in Motion

- 56 Aligned scans from two human subjects
- Wide variability in poses, limited variability in body shapes

Ghosh et al., NIPS 2012

Visual Comparisons

Ghosh et al., NIPS 2012

Quantitative Evaluation

Measure error in predicted motion for the candidate segmentations

Ghosh et al., NIPS 2012

Large Scale Studies

1732 meshes, 78 subjects, ~22,000 mesh faces Wide variability in both body shapes and poses.

Segmented Bodies

Computer generated meshes

Inference through Gibbs Sampling

Local changes in the link structure lead to large changes in the partition structure

Talk Outline

- Distance dependent partitions
 - Parts from articulated 3D objects
- Hierarchical distance dependent partitions
 - Activity discovery from MoCap data
- Learning distance dependent models
 - Image and video segmentation

Hierarchical Distance Dependent Partitions

Model affinities between both data points and latent clusters.

Ghosh et al., UAI 2014

Hierarchical ddCRP

Group 1

Group 2

Hierarchical ddCRP

Group 1

Group 2

Hierarchical ddCRP

Activity Recognition

Hierarchical Auto Regressive Mixtures

• Sequence specific ddCRP models:

$$p(c_{gi} = gj \mid \alpha_g, A^g) \propto \begin{cases} \exp(-\frac{(i-j)}{N_g^{\gamma}}) & i > j, \\ 0 & i < j, \\ 1 & i = j. \end{cases}$$

Global CRP across sequences:

 $\Lambda_0 \sim \operatorname{CRP}(T(\mathbf{c}), \alpha_0)$

Autoregressive likelihoods:

$$x_{gt} = B_m x_{gt-1} + \epsilon_m$$

$$B_m, \epsilon_m \sim H(\lambda)$$
Discovered Activities

Examples of activities discovered by hddCRP

External Model Validation

15 independent MCMC chains

Inference

- More involved.
- No simple Gibbs sampler, need to resort to Metropolis Hastings.
- Nonetheless "efficient" MH samplers can be crafted.

Ghosh et al., UAI, 2014

Summary

Articulated object segmentation through ddCRP mixtures

Activity discovery via hierarchical distance dependent models

Talk Outline

- Distance dependent partitions
 - Parts from articulated 3D objects
- Hierarchical distance dependent partitions
 - Activity discovery from MoCap data
- Learning distance dependent models
 - Image and video segmentation

Feature Augmented Models

Latent variables governing contribution of features

Learning From Partitions

- Moderate sized databases of partitions available for image and video collections.
- Uncertainty in labeled partitions
- Partitions are observed, but *links are not*.

Approximate Bayesian Computation

- Noisy partitions human interpretations vary
 - Appropriate noise model? Unclear, ABC instead
- Likelihood free inference:
 - Match "*interesting*" model statistic with observed data statistic

Marin et al., Stat Comput, 2012

Auxiliary Training Model

$$p(\mathbf{c}, w_c, Y) \propto p(w_c) \prod_{d=1}^{D} p(c_d \mid w_c) \mathbf{1}(z(\mathbf{c}_d), y_d)$$

$$\mathbf{1}(y_a, y_b) = \begin{cases} 1 \text{ if } \Delta(y_a, y_b) < \epsilon, \\ 0 \text{ otherwise.} \end{cases}$$

Probability restricted to partitions close to training data.

Marin et al., Stat Comput, 2012

Loss Aware Model

 Notion of closeness captured through a task specific loss function:

$$\Delta(y_a, y_b) = 1 - \operatorname{RI}(y_a, y_b)$$

- Marginalize over the exponentially large space of latent links using MCMC
- Efficient ABC variant for sampling from the *auxiliary* training model

Talk Outline

- Distance dependent partitions
 - Parts from articulated 3D objects
- Hierarchical distance dependent partitions
 - Activity discovery from MoCap data
- Learning distance dependent models
 - Image and video segmentation

Image Segmentation

Generative features: $\theta_{ij} = \{ \operatorname{row}_i - \operatorname{row}_j, \\ \operatorname{col}_i - \operatorname{col}_j \}$

Conditional features: $\theta_{ij} = \{ \operatorname{row}_i - \operatorname{row}_j, \\ \operatorname{col}_i - \operatorname{col}_j, \operatorname{edge}_{ij} \}$

Image Representation

Each super-pixel is described through histograms (~120 bin) of color and texture

Eight Natural Scene Category Dataset (LabelMe)

400 train and 800 test images

Oliva and Torralba, 2001

Samples from learned models

Conditional

Mountain

Generative

Coast

Street

Monte Carlo Statistics

Statistics from 10,000 partitions sampled from generative affinities

Qualitative Results

Quantitative results

LabelMe

BSDS300

Learning in hierarchical models

 Auxiliary model for training now needs to account for links between clusters

$$p(\mathbf{c}, \mathbf{k}, w, Y) \propto p(w) \prod_{d=1}^{D} p(c_d \mid w_c) p(k_d \mid c_d, w_k) \mathbf{1}(z(\mathbf{c}_d, k_d), y_d)$$
$$w = \{w_c, w_k\}$$

VSB 100 - 40 training videos

First Frame

Last Frame

G

fixed

First Frame

Last Frame

G

First Frame

Last Frame

Learning benefits hddCRP

Summary

hddCRP and ddCRP affinities can be effectively learned from labeled partitions

Thank You

Statistics of Human Segments

 Human segment sizes follow power law behavior.

Sudderth & Jordan, NIPS 2008

Spatial Coupling through Layers

Image Partition

 $z_n = \min\{k \mid u_{kn} < \delta_k\}$

Sudderth & Jordan, 2008 Ghosh & Sudderth, 2012

Video Segmentation

- Features between superpixels same as image segmentation.
- Features between segments Shapes, sizes and positions.

$$\begin{aligned} \theta_{ts}^{k} &= [\vartheta_{ts}, \varphi_{ts}, \frac{|\zeta_{t} - \zeta_{s}|}{S}]^{T}, \\ \vartheta_{ts} &= \mathbf{1}_{[t,s|t \in g, s \in g]} \left[\frac{r_{t} - r_{s}}{R}, \frac{y_{t} - y_{s}}{Y}\right]^{T}, \\ \varphi_{ts} &= \mathbf{1}_{[t,s|t \in g+1, s \in g]} \left[\frac{|r_{t} - r_{s}|}{R}, \frac{|y_{t} - y_{s}|}{Y}, 1 - \frac{t \cap s}{t \cup s}\right]^{T} \end{aligned}$$

MoCap Likelihoods

$\Sigma_{z_{gi}} \mid n_0, S_0 \sim \mathrm{IW}(n_0, S_0),$ $B_{z_{gi}} \mid M, \Sigma_{z_{gi}}, L \sim \mathcal{MN}(M, \Sigma_{z_{gi}}, L),$ $\epsilon_{z_{gi}} \sim \mathcal{N}(0, \Sigma_{z_{gi}}),$

Moderate robustness to alignment errors

Inferred Segmentation

Segmentation with 20 Parts

Ghosh et al., NIPS 2012

Axial Symmetry

 $\frac{p(Y_{left}^{head} \cup Y_{right}^{head} \mid X_{left}^{head} \cup X_{right}^{head})}{p(Y_{left}^{head} \mid X_{left}^{head})p(Y_{right}^{head} \mid X_{right}^{head})}$ $\frac{p(Y_{left}^{chest} \cup Y_{right}^{head} \mid X_{left}^{chest} \cup X_{right}^{chest})}{p(Y_{left}^{chest} \mid X_{left}^{chest})p(Y_{chest}^{chest} \mid X_{right}^{chest})}$ Only merge similarly moving parts across axis of symmetry

Measure of Rigidity

Inference

Algorithm 1: Hierarchical ddCRP sampler

For data instance $i \in \{1 \dots N_G\}$ jointly propose data and affected cluster links $\{\mathbf{c}^*, \mathbf{k}^*\} \leftarrow$ ProposeLinks $(\mathbf{x}, \mathbf{k}, \mathbf{c}, \alpha_{1:G}, A^{1:G}, \alpha_0, A^0(\mathbf{c}))$. Evaluate the proposal according to the Metropolis Hastings acceptance probability $a(\{\mathbf{c}^*, \mathbf{k}^*\}, \{\mathbf{c}, \mathbf{k}\})$. If the proposal is accepted, $\{\mathbf{c}^*, \mathbf{k}^*\}$ becomes the next state. If the proposal is rejected, the original configuration is retained. For clusters $t \in T(\mathbf{c})$ resample cluster links via a Gibbs update: $k_t \sim p(k_t \mid \mathbf{k}_{-t}, \mathbf{c}, \mathbf{x}, \alpha_0, A^0(\mathbf{c}))$.

Increasing Probability

Stick Breaking to Layers

Sequential Binary Sampler:

- $b_{ki} \sim \text{Bernoulli}(v_k)$
 - $z_i = \min\{k \mid b_{ki} = 1\}$
- For each data instance i, go through the bins in order 1 through infinity.
- Toss a biased coin (with the probability of heads = v_k) for each bin .
- · Pick the bin if the coin turns up heads

MCMC Learning

- Marginalize over the exponentially large space of latent links
 MCMC samples
- Explore the marginal posterior of the auxiliary training model:

$$p(w_c \mid Y) = \sum_{\mathbf{c}} p(w_c, \mathbf{c} \mid Y) \approx \sum_{\mathbf{c}^{(s')}} p(w_c^{(s)}, \mathbf{c}^{(s')} \mid Y)$$
$$w_c^s, \mathbf{c}^s \sim p(w_c, \mathbf{c} \mid Y)$$

Random walk Proposal: $w_c^{t+1} \sim \mathcal{N}(w_c^{t+1} \mid w_c^t, \text{scale} \times \mathbf{I})$

Gibbs Step: $c_{di} \mid \mathbf{c}_{-di}, w_c^*, Y \sim p(c_{di} \mid w_c^*) \delta(z(\mathbf{c_d}), y_d)$

Bayesian Nonparametric Priors

$$G(\theta) = \sum_{k=1}^{\infty} \pi_k \delta_{\theta_k}(\theta)$$
$$\sum_{k=1}^{\infty} \pi_k = 1 \quad 0 \le \pi_k \le 1$$
$$\theta_k \sim H(\lambda)$$

Pitman-Yor Process

Power Law Behavior

Number of unique clusters in N observations: $O(\alpha_b N^{\alpha_a})$ Expected size of sorted component k: $O(k^{-\frac{1}{\alpha_a}})$

Hierarchical ddCRP

Sample local links:

$$p(c_{gi} = gj \mid \alpha_g, A^g) \propto \begin{cases} A_{ij}^g & i \neq j, \\ \alpha_g & i = j. \end{cases}$$

 $\begin{array}{l} \Lambda_g = z(\mathbf{c}_g) \\ \text{Sample global links:} \end{array}$

$$p(k_t = s \mid \alpha_0, A^0(\mathbf{c})) \propto \begin{cases} A_{ts}^0(\mathbf{c}) & t \neq s, \\ \alpha_0 & t = s. \end{cases}$$

$$\Lambda_0 = z(\mathbf{k})$$
Sample data generating parameters:

$$\phi_m \sim H(\lambda), \forall m \in \Lambda_0$$

$$x_i \sim \phi_m, \forall i \in m$$

Pitman-Yor Process

 The Pitman-Yor process defines a distribution on infinite discrete measures, or partitions

$$\pi_k = w_k \prod_{l=1}^{k-1} (1 - w_l) \qquad w_k \sim \text{Beta}(1 - \alpha_a, \alpha_b + k\alpha_a)$$

Video Segmentation

$$P = \frac{\sum_{i=1}^{M} \left[\left\{ \sum_{s \in \mathbb{S}} \max_{g \in \mathbb{G}_i} |s \cap g| \right\} - \max_{g \in \mathbb{G}_i} |g| \right]}{M|\mathbb{S}| - \sum_{i=1}^{M} \max_{g \in \mathbb{G}_i} |g|}$$
$$R = \frac{\sum_{i=1}^{M} \sum_{g \in \mathbb{G}_i} \left\{ \max_{s \in \mathbb{S}} |s \cap g| - 1 \right\}}{\sum_{i=1}^{M} \left\{ |\mathbb{G}_i| - \Gamma_{\mathbb{G}_i} \right\}}$$

VPR

Approximate Bayesian Computation

Algorithm 3 Likelihood-free MCMC sampler

Use Algorithm 2 to get a realisation ($\theta^{(0)}, \mathbf{z}^{(0)}$) from the ABC target distribution $\pi_{\varepsilon}(\boldsymbol{\theta}, \mathbf{z}|\mathbf{y})$ for t = 1 to N do Generate θ' from the Markov kernel $q(\cdot|\theta^{(t-1)})$, Generate \mathbf{z}' from the likelihood $f(\cdot | \boldsymbol{\theta}')$, Generate *u* from $\mathcal{U}_{[0,1]}$, if $u \leq \frac{\pi(\theta')q(\theta^{(t-1)}|\theta')}{\pi(\theta^{(t-1)})q(\theta'|\theta^{(t-1)})}$ and $\rho\{\eta(\mathbf{z}'), \eta(\mathbf{y})\} \leq \varepsilon$ then set $(\boldsymbol{\theta}^{(t)}, \mathbf{z}^{(t)}) = (\boldsymbol{\theta}', \mathbf{z}')$ else $(\boldsymbol{\theta}^{(t)}, \mathbf{z}^{(t)}) = (\boldsymbol{\theta}^{(t-1)}, \mathbf{z}^{(t-1)}),$ end if end for