Assumed Density Filtering Methods For Learning Bayesian Neural Networks

S. Ghosh*, <u>F. M. Delle Fave</u>, J. Yedidia** Disney Research Pittsburgh * IBM research ** Lyric Labs

(Deep) Neural Networks – Impressive Performance

Krizhevsky '09 '15, Russakovsky '15

Maas'15, Graves'14, Hinton'12

- I. Motivation and Challenges
- II. Assumed Density Filtering (ADF)
- III. ADF for Multi-Class Classification
- IV. Experiments
- V. Summary

- I. Motivation and Challenges
- II. Assumed Density Filtering (ADF)
- III. ADF for Multi-Class Classification
- IV. Experiments
- V. Summary

Some challenges remain:

- Neural nets don't model uncertainty around predictions well.
- Prone to over fitting.
- Pesky learning parameters: learning rate, annealing schedule, pre-conditioners.

Bayesian Neural Networks

• Endow model parameters with distributions (old idea: Denker'91, Mackay'92, Neal'95)

- Provides predictive uncertainty.
- Model selection via marginal likelihood
- Standard guards against overfitting

Learning: $p(\mathcal{W} \mid \mathbf{x}, \mathbf{y}, \lambda) \propto p(\mathcal{W} \mid \lambda) \prod_{n=1}^{N} p(y_n \mid x_n, \mathcal{W})$ Inference: $p(y_{\text{test}} \mid x_{\text{test}}, \lambda) = \int p(y_{\text{test}} \mid \mathcal{W}, x_{\text{test}}) p(\mathcal{W} \mid \mathbf{x}, \mathbf{y}, \lambda) d\mathcal{W}$

Posterior Intractability

• $p(\mathcal{W} \mid \mathbf{x}, \mathbf{y})$ is intractable, must be approximated.

MCMC:

 Traditional MCMC methods don't scale.

Stochastic gradient MCMC methods have been proposed (*Welling'11*). Variational inference:

 $\vartheta^* = \mathop{\rm argmin}_{\vartheta} \, \mathrm{KL}(q(\mathcal{W} \mid \vartheta) || p(\mathcal{W} \mid \mathbf{x}, \mathbf{y}))$

 Black Box variational inference: Stochastic gradient descent on variational free energy (*Graves'11, Blundell'15*)

Still pesky learning parameters!

- I. Motivation and Challenges
- II. Assumed Density Filtering (ADF)
- III. ADF for Multi-Class Classification
- IV. Experiments
- V. Summary

Assumed Density Filtering (Opper'98)

1) Fully factorized approximation:

$$q(\mathcal{W} \mid \vartheta) = \prod_{l=1}^{L} \prod_{i=1}^{V_l} \prod_{j=1}^{V_{l-1}+1} q(w_{ijl} \mid \vartheta_{ijl})$$

Assumed Density Filtering (Opper'98)

1) Fully factorized approximation:

$$q(\mathcal{W} \mid \vartheta) = \prod_{l=1}^{L} \prod_{i=1}^{V_l} \prod_{j=1}^{V_{l-1}+1} q(w_{ijl} \mid \vartheta_{ijl})$$

2) Online algorithm

$$\tilde{q}(w) = \frac{1}{Z} s(w) q(w \mid \vartheta^{n-1})$$

Update posterior beliefs after observing new evidence

Assumed Density Filtering (Opper'98)

1) Fully factorized approximation:

$$q(\mathcal{W} \mid \vartheta) = \prod_{l=1}^{L} \prod_{i=1}^{V_l} \prod_{j=1}^{V_{l-1}+1} q(w_{ijl} \mid \vartheta_{ijl})$$

2) Online algorithm

Update posterior beliefs after observing new evidence

3) After update q no longer in simple parametric form
-> project to tractable approximating family

$$\vartheta^n = \underset{\vartheta}{\operatorname{argmin}} \operatorname{KL}(\tilde{q}(w) || q(w \mid \vartheta))$$

The ADF Algorithm:

For Gaussian approximations (Minka'01):

$$\begin{split} m_{ijl}^{n} &= m_{ijl}^{n-1} + v_{ijl}^{n-1} \frac{\partial \ln Z}{\partial m_{ijl}^{n-1}}, \\ v_{ijl}^{n} &= v_{ijl}^{n-1} - (v_{ijl}^{n-1})^2 \left[\left(\frac{\partial \ln Z}{\partial m_{ijl}^{n-1}} \right)^2 - 2 \frac{\partial \ln Z}{\partial v_{ijl}^{n-1}} \right] \end{split}$$

Both updates require the marginal likelihood:

$$\ln \mathbf{Z} = \ln \int p(y_n \mid x_n, \mathcal{W}) q(\mathcal{W} \mid \vartheta^{n-1}) d\mathcal{W}$$

ADF algorithms: Mechanics

Approximate marginal likelihood:

$$\ln \mathbf{Z} \approx \ln \int p(\mathbf{y}_n \mid \mathbf{z}_L) \mathcal{N}(\mathbf{z}_L \mid \nu_L, \Psi_L) d\mathbf{z}_L$$

ADF algorithms: Mechanics

Approximate marginal likelihood:

$$\ln \mathbf{Z} \approx \ln \int p(\mathbf{y}_n \mid \mathbf{z}_L) \mathcal{N}(\mathbf{z}_L \mid \nu_L, \Psi_L) d\mathbf{z}_L$$

1 - Forward propagate distributions and approximate layer outputs with Gaussians by moment matching:

$$\begin{array}{c} x_1 \\ x_2 \\ x_2 \\ y_{l_3} \end{array} \quad z_l \sim \mathcal{N} \left(\begin{bmatrix} \mathbb{E}[z_{1l}] \\ \mathbb{E}[z_{1l}] \\ \vdots \\ 1 \end{bmatrix}, \begin{bmatrix} \operatorname{var}(z_{1l}) & 0 & \cdots & 0 \\ 0 & \operatorname{var}(z_{2l}) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \right)$$

ADF algorithms: Mechanics

Approximate marginal likelihood:

$$\ln \mathbf{Z} \approx \ln \int p(\mathbf{y}_n \mid \mathbf{z}_L) \mathcal{N}(\mathbf{z}_L \mid \nu_L, \Psi_L) d\mathbf{z}_L$$

1 - Forward propagate distributions and approximate layer outputs with Gaussians by moment matching:

2 - Backward propagate gradients of the marginal likelihood.

ADF for Bayesian Neural Networks

Probabilistic Back propagation (PBP) Hernandez-Lobato' 15: $q(w_{ijl} \mid \vartheta_{ijl}) = \mathcal{N}(w_{ijl} \mid m_{ijl}, v_{ijl})$ Expectation Back propagation (EBP) Soudry' 14: $q(w_{ijl} \mid \vartheta_{ijl}) = \mathcal{N}(w_{ijl} \mid m_{ijl}, 1)$

EBP vs PBP: Direct Comparison Necessary

PBP might not always be the better algorithm:

• ADF methods approximate uncertainty incorrectly Multiple passes over same data points

EBP cruder approximation might be good enough

Comprehensive comparisons were not performed:

	can do	need work
EBP	binary neurons, binary classification	regression, count regression, multi-class classification, rectified linear units
PBP	rectified linear neurons continuous regression	count regression, binary classification, multi-class classification

- I. Motivation and Challenges
- II. Assumed Density Filtering (ADF)
- III. ADF for Multi-Class Classification
- IV. Experiments
- V. Summary

Multi-class Classification

Likelihood: Softmax transformed parameterizations

$$\mathbf{y}_{n} \mid \mathbf{z}_{L} \sim \operatorname{Cat}(\sigma(\mathbf{z}_{L})) \quad \sigma(a)_{j} = e^{a_{j}} / \sum_{k=1}^{C} e^{a_{k}}$$
$$\mathbf{z}_{L} = g(x_{n}, \mathcal{W}) \sim \mathcal{N}(\mathbf{z}_{L} \mid \nu_{L}, \Psi_{L}) \in \mathbb{R}^{C} \longrightarrow \text{Number of classes}$$

Unfortunately, again: intractable marginal likelihood

$$\ln \mathbf{Z} \approx \ln \int e^{\mathbf{y}_n^T \mathbf{z}_L} \underbrace{|\mathbf{z}_L|}_{\text{Log of the sum of exponentials}} \mathcal{N}(\mathbf{z}_L | \nu_L, \Psi_L) d\mathbf{z}_L$$

Making the intractable tractable

Unfortunately, again: intractable marginal likelihood

$$\ln \mathbf{Z} \approx \ln \int e^{\mathbf{y}_n^T \mathbf{z}_L - \operatorname{lse}(\mathbf{z}_L)} \mathcal{N}(\mathbf{z}_L | \nu_L, \Psi_L) d\mathbf{z}_L$$

First Idea: lower bound on the marginal likelihood:

Log Bound
$$\ln Z \ge \mathbf{y}^T \nu_L - \operatorname{lse}(\nu_L + \psi_L/2)$$
$$\nabla_{\nu,\psi} \ln Z \approx \nabla_{\nu,\psi} [\mathbf{y}^T \nu_L - \operatorname{lse}(\nu_L + \psi_L/2)]$$

Second Idea: Stochastic Marginal Likelihood

$$\ln \mathbf{Z} \approx \ln \frac{1}{S} \sum_{s=1}^{S} p(y_n \mid \mathbf{z}_L^{(s)}) \quad \mathbf{z}_L^{(s)} \sim \mathcal{N}(\mathbf{z}_L \mid \nu_L, \Psi_L)$$

We use the "re-parameterization trick" (*Kingma'13*) to compute low variance stochastic gradients

$$\mathbf{z}_{L}^{(s)} = \nu_{L} + M\epsilon^{(s)} \stackrel{\Delta}{=} t(\nu_{L}, \psi_{L}, \epsilon^{(s)}) \quad \begin{array}{l} \epsilon^{(s)} \sim \mathcal{N}(0, I) \\ \Psi_{L} = MM^{T} \end{array}$$

Stochastic Gradients

(more accurate than log bound gradients)

$$\nabla_{\nu,\Psi} \ln \mathbf{Z} \approx \frac{1}{Z} \left[\frac{1}{S} \sum_{s=1}^{S} \nabla_{\nu,\Psi} p\left(\mathbf{y}_n \mid t(\nu_L, \Psi_L, \epsilon^{(s)}) \right) \right]$$

21

- I. Motivation and Challenges
- II. Assumed Density Filtering (ADF)
- III. ADF for Multi-Class Classification
- IV. Experiments
- V. Summary

EBP vs PBP: Posterior Quality

Results:

- PBP outperforms EBP
 - Posterior much more similar to the ground truth.

EBP vs PBP: Regression

Setup:

1 hidden layer – 50 (100) units

10 datasets

10 experiments: 90 / 10 split

	Dataset	N	d
1	Boston	506	13
2	Concrete Compression Strength	1030	8
3	Energy Efficiency	768	8
4	Kin8nm	8192	8
5	Naval Propulsion	11,934	16
6	Combined Cycle Power Plant	9568	4
7	Protein Structure	9568	4
8	Wine Quality Red	1599	11
9	Yacht Hydrodynamics	308	6
10	Year Prediction MSD	515,345	90

Results:

PBP consistently outperforms EBP

EBP vs PBP: Binary Classification

EBP vs PBP: Multi-Class

Setup:

EBP vs PBP stochastic bound

(100 samples)

2 hidden layer – 400 units

1 experiment: 100 epochs

Training: 60 000 images

Test: 10 000 images

Results:

On MNIST --- PBP appears to overfit marginally quicker than EBP.

- I. Motivation and Challenges
- II. Assumed Density Filtering (ADF)
- III. ADF for Multi-Class Classification
- IV. Experiments
- V. Summary

Summary

- Extend two algorithms PBP and EBP
 - Multi-class classification
 - Regression + Count Regression
 - Rectified Linear Units
- Experiments on different learning tasks
 PBP outperforms EBP