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1. Low rank Expectation Propagation

Figure 1. True and Approximate distributions. Graphical models representing the distribution of random variables in a layer (We have
left out the hyper-parameters on δ and v). Left: True distribution. Right: Approximate distribution.

As previously noted, the random variables associated with each layer of our model can be treated independently of the
others. Following the notation introduced in Section 3, we have

p(u,v, δ | t, α) ∝ N (v|0, I)p(δ|α)
N∏

n=1

N(un|aTnv, ψn)I(tn(δ − un) > 0) (1)

We approximate this distribution with a Gaussian distribution of the form:

q(u,v, δ | t, α) ∝ N (v|0, I)N (δ | µ̃p, σ̃
2
p)

N∏
n=1

N (un | aTnv, ψn)N (un | µ̃n, σ̃
2
n)N (δ | µ̃δn , σ̃

2
δn) (2)

The graphical models corresponding to the true and approximate distributions are shown in Figure 1. EP proceeds by
removing an approximate factor and substituting it with the corresponding true factor, giving rise to the augmented distribu-
tion. The moments of this augmented distribution are then computed and the parameters of the approximate factor is updated
by matching the moments of the approximate and augmented distributions. Next, we demonstrate how these quantities are
computed for our model.

Firstly, note that our approximation assumes independence between δ and {u,v}. From figure 1 and using standard
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Gaussian BP results we have

q(v | t) ∝ N (v|0, I)
N∏

n=1

mno(v) (3)

with

mno(v) ∝ N (v | τ−1
no νno, τ

−1
no ), τno =

τ̃n
1 + ψnτ̃n

ana
T
n (4)

νno =
ν̃n

1 + ψnτ̃n
an, ν̃n = τ̃nµ̃n, τ̃n = σ̃−2

n (5)

Thus, we have the following result

q(v | t) ∝ N (v |, τ−1
posνpos, τ

−1
pos) (6)

τ pos = I +
N∑

n=1

τ̃n
1 + ψnτ̃n

ana
T
n (7)

νpos =

N∑
n=1

ν̃n
1 + ψnτ̃n

an (8)

We can remove the effect of an approximate factor by dividing out the corresponding message.

q(v | t−n) ∝ N (v |, τ−1
−nν−n, τ

−1
−n) (9)

τ−1
−n = (τ pos − τno)

−1 (10)
ν−n = νpos − νno (11)

Note that τ−1
−n can be efficiently computed using the following rank one update:

τ−1
−n = Σ− (−m)

Σana
T
nΣ

1−maTnΣan
(12)

m =
τ̃n

1 + ψnτ̃n
and τ−1

−n = Σ (13)

Next observe that

q(un|t) ∝ N (un | µ̃n, σ̃
2
n)mon(un) (14)

q(un|t−n) ∝ mon(un) (15)
mon(un) ∝ N (un | τ−1

on νon, τ
−1
on ) (16)

A little algebra reveals that the parameters of mon are given by

τ−1
on = ψn + aTnτ

−1
−nan and τ

−1
on νon = aTnτ

−1
−nν−n (17)

Similarly, the parameters of the distribution q(δ | t−n) ∝ N (δ | τ−1
−δn

ν−δn , τ
−1
−δn

) can be computed. Finally, the moments
of the following augmented distribution need to be computed:

q(un, δ | t−n)I(tn(δ − un) > 0) = q(δ | t−n)q(un | t−n)I(tn(δ − un) > 0) (18)

A little bit of algebra leads to the following closed form formula for the relevant normalization constants.
Normalization constant of the augmented distribution (0th order moment):

P = Φ

 tn(µ−δn − µ−n)√
σ2
−n + σ2

−δn

 = Φ(hn) (19)



First and Second order moments for δ:

E[δ] = µ−δn + tn
σ2
−δn

N(hn)

Φ(hn)
√
σ2
−n + σ2

−δn

(20)

E[δ2] = 2µ−δnE[δ]− µ2
−δn + σ2

−δn −
σ4
−δn

hnN(hn)

Φ(hn)(σ2
−n + σ2

−δn
)

(21)

First and Second order moments for un:

E[un] = µ−n − tn
σ2
−nN(hn)

Φ(hn)
√
σ2
−n + σ2

−δn

(22)

E[u2n] = 2µ−nE[un]− µ2
−n + σ2

−n −
σ4
−nhnN(hn)

Φ(hn)(σ2
−n + σ2

−δn
)

(23)

where µ−n = τ−1
on νon , µ−δn = τ−1

−δn
ν−δn , σ2

−δn
= τ−1

−δn
, σ2

−n = τ−1
on .

The parameters of the approximate factor corresponding to un can now be computed and the posterior on v updated using
a rank one update, analogous to standard Gaussian process classification [1]. A final issue worth noting is that we have a
non standard prior on δ which is difficult to deal with. We approximate the prior on δ with another Gaussian factor. The
moments required for computing the parameters of this Gaussian are estimated numerically. Since, δ is an unidimensional
quantity, numerical moment computation is easy and efficient. Furthermore, these moments are required only once per EP
sweep, where a sweep is defined as circling through all the super-pixels. Thus the added computational cost of numerical
moment computation is negligible.

1.1. Computational Complexity

Observe that we only explicitly maintain a Gaussian posterior distribution on v which is a D dimensional quantity. Thus,
the complexity of one EP sweep is O(ND2) as opposed to standard Gaussian process classification which has a complexity
of O(N3) where N is the number of super-pixels. Observe that for any candidate partition, the prior for all layers can be
evaluated in parallel. Thus, the cost of running T search iterations, each iteration running t sweeps of EP is O(tTND2).

2. Likelihood Evaluation
The likelihood computation involves evaluating the independent color and texture integrals∫

Θ

p(x|z,Θ)p(Θ|ρ)dΘ =

∫
θc

p(xc|z, θc)p(θc|ρc)dθc
∫
θt

p(xt|z, θt)p(θt|ρt)dθt (24)

which is a standard multinomial-Dirichlet integral. We provide the solution to the color integral here for the sake of com-
pleteness (To simplify notation we denote θc, xc by just θ and x).

For K segments and N super-pixels we have,∫
θ

p(x|z, θc)p(θ|ρc)dθ =
K∏

k=1

∫
θk

p(θk|ρc)
N∏

n=1

p(xn|zn, θk)I(zn=k)dθk (25)

=
K∏

k=1

∫
θk

∆(ρc)

Wc∏
w=1

θ
ρc
w−1

kw

N∏
n=1

Wc∏
w=1

(θxnw

kw )I(zn=k)dθk (26)

=
K∏

k=1

∆(ρc)

∫
θk

Wc∏
w=1

θ
ρc
w−1

kw

Wc∏
w=1

(θkw)
∑

n xnw×I(zn=k)dθk (27)

=
K∏

k=1

∆(ρc)

∫
θk

Wc∏
w=1

(θkw)
xk
w+ρw−1dθk (28)



=
K∏

k=1

∆(ρc)

∆(ρc + xk)
(29)

In the above derivation ∆(ρc) =
Γ(

∑
w ρc

w)∏
w Γ(ρc

w) and xkw = number of times word w occurs with segment k. Putting it all together
we have ∫

Θ

p(x|z,Θ)p(Θ|ρ)dΘ =
K∏

k=1

∆(ρc)

∆(ρc + x
(c)
k )

∆(ρt)

∆(ρt + x
(t)
k )

(30)

3. Search Details
In this section we provide details of our search algorithm.

3.0.1 Search Pseudo-code

Get the initial partition z0 using k-means.
Set maxIter = 200, i = 1, bestMode = z0

while i ≤ maxIter do
while p(zi | x, η) ≥ p(zi−1 | x, η) do

Apply shift move to zi−1 to get zi

bestMode = zi

i = i+ 1
end while
if i ≤ maxIter then

Select a move from the set { Merge, Swap, Split }
Apply the selected move to zi−1 to get zi

if p(zi | x, η) ≥ p(zi−1 | x, η) then
bestMode = zi

end if
i = i+ 1

end if
end while
return bestMode

3.1. Shift move details

Notation note: zn is a categorical random variable assuming one of K values, where K is the number of components in
the partition z. tn on the other hand is a binary random variable indicating whether super-pixel n is assigned to layer k or
not. A is a N-by-D matrix, with rows aT1 . . . a

T
N

We are interested in optimizing p(z | x, η) with respect to z = {z1, z2...zn}. In the shift move we assign each zn = k̂

such that k̂ = argmax
k

p(zn = k | z−n, α,A,Ψ)p(x | z, ρ). Note that this implies we are optimizing p(z | x, η) one zn at a

time.

1. for each super-pixel n

(a) for each layer k

i. If super-pixel n is defined for layer k; Compute the approximate posterior cavity distribution on v; q(v|t−n) ∝
N (v|µ−n,Σ−n) and the approximate posterior cavity distribution for the layer’s threshold δk; q(δk|t−n) =
N(δk|µ−δn , σ

2
−δn

)

ii. If super-pixel n is not defined for layer k (ie it has already been assigned to a previous layer) the posterior
distributions on v and δk are themselves the cavity distributions.



iii. Next, compute the parameters of the conditional distribution q(un|v, t−n) = q(un|µ∗, σ
2
∗), given by

µ∗ = aTnµ−n (31)

σ2
∗ = Ψn + aTnΣ−nan (32)

iv. Finally, compute πnk = p(tn = 1|t−n) as follows

πnk = Eq[I(un < δk)] (33)

=

∫ ∫
I(un < δk)N(un|µ∗, σ

2
∗)N(δk|µ−δn , σ

2
−δn)dundδk (34)

= Φ

 µ−δn − µ∗√
σ2
∗ + σ2

−δn

 (35)

v. The probability of super-pixel n getting assigned to layer k is given by

p(zn = k | z−n) = p(un < δk | un > δl) = πnk
∏
l

(1− πnl); with l = 1...k − 1 (36)

vi. Compute the posterior probability of the super-pixel assignment

p(z | x, ρ, α) ∝ p(zn = k | z−n)

∫
p(x | z, θ)p(θ | ρ)dθ (37)

(b) Finally, assign n to layer k̂ which maximizes posterior probability

k̂ = argmax
k

p(zn = k | z−n)

∫
p(x | z, θ)p(θ | ρ)dθ (38)

(c) For all layers affected by the shift of super-pixel n, update the corresponding posterior distribution on v by a EP
projection for the relevant super-pixel. Care is taken such that when a previously invalid super-pixel gets shifted
into a layer, the old posterior is treated as the new cavity distribution. Likewise when a super-pixel is shifted out
of a layer, the old cavity distribution is treated as the new posterior.

4. Probability to Correlation mapping details
Covariance Calibration. We are interested in estimating a mapping between the correlation (c) of a pair of Gaussian

random variables ( ui and uj), and the conditionally learned probability qij of the corresponding super-pixels i and j being
assigned to the same layer. According to our generative model, two super-pixels i and j can be assigned to the same layer k
iff both ui and uj are less than the threshold δk. Hence, the probability of two super-pixels being assigned to layer k is

p−|δk =

∫ δk

−∞

∫ δk

−∞
N

([
ui
uj

]
|
[

0
0

]
,

[
1 c
c 1

])
duiduj (39)

Furthermore, we can marginalize out the unknown thresholds δk

qk−(α, ρ) =

∫ ∞

−∞

∫ δk

−∞

∫ δk

−∞
N

([
ui
uj

]
|
[

0
0

]
,

[
1 c
c 1

])
p(δk|α)duidujdδk (40)

Let us further define

qk+(α, ρ) =

∫ ∞

−∞

∫ ∞

δk

∫ ∞

δk

N
([

ui
uj

]
|
[

0
0

]
,

[
1 c
c 1

])
p(δk|α)duidujdδk (41)

which is the probability that both ui and uj are greater than the δk. Note that neither q− nor q+ can be computed in closed
form and are both numerically approximated.



Now observe that two super-pixels i and j can be assigned to the same layer, if they are both assigned to the first layer or
if neither is assigned to the first layer but both are assigned to the second layer or if neither is assigned to the first two layers
but both are assigned to the third layer and so on. We can thus express pij as

qij = q1−(α, ρ) + q2−(α, ρ)q
1
+(α, ρ) + q3−(α, ρ)q

1
+(α, ρ)q

2
+(α, ρ) + . . . (42)

≈
K∑

k=1

qk−(α, ρ)
K−1∏
l=1

ql+(α, ρ) (43)

where we have explicitly truncated our model to have K (some large number) layers. The above equation defines the sought
relationship and allows us to map conditionally learned qij to pairwise correlations of Gaussian random variables. The
mapping is visualized in figure 2.
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Figure 2. Mapping between correlation coefficients and pairwise probabilities

5. Experimental Details
This section provides further details about our experimental setup. Recall that we tune parameters of competing methods

by performing a grid search over parameter values.
Mean shift has three tunable parameters, region band width (rbw), spatial bandwidth (spbw) and minimum region size

(min), FH also has three parameters, a Gaussian kernel bandwidth σ, a scale parameter K and a minimum region size param-
eter(min). Normalized cuts and gPb have just one tunable parameter each – the number of segments (N ) and a scale parameter
(S) respectively. The parameters for all methods were tuned on the BSDS300 training set by performing a grid search and
selecting values which jointly optimize rand index and segCover. The grid search was conducted over the following param-
eter values – a) MS - rbw= {1, 3, 6, 10, 15, 25}, spbw= {1, 3, 7, 10, 15, 25}, min= {500, 1000, 2000, 3000, 4000, 8000}
b) FH - σ = {0.2, 0.5, 0.8, 1.0}, K and min = {50, 100, 5001000} c) Ncuts - N = {3, 5, 10, 15, 20, 25} d) gPb -
S = {0.05, 0.1, 0.13, 0.15, 0.2, 0.25, 0.3, 0.4} .

5.1. Additional Results

This section provides additional qualitative results. Figure 3 displays diverse modes found by the search procedure while
figure 4 provides various examples of MAP partitions preferred by our model.
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Figure 3. Diverse Segmentations. Diverse Segmentations discovered by our proposed algorithm. Each row depicts multiple partitions for
a given image. Partitions in the second column are the MAP estimates. Other partitions with significant probability masses are shown in
the third and fourth columns.



Figure 4. Example Segmentations. MAP partitions pf a random subset of LabelMe and BSDS images.


