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1 Von Mises-Fisher distributions
If a d-dimensional unit vector x ∈ RD and ||x||2 = 1 follows a von Mises-Fisher (vMF) distribution then:

p(x | µ, κ) = κ
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with ||µ||2 = 1, κ ≥ 0 and d ≥ 2. The parameter µ corresponds to the mean direction and κ is a concentration
parameter. Ir(.) is a modified Bessel function of the first kind with degree r. The modified Bessel function
grows exponentially fast with κ canceling out the exponential growth of the numerator in equation 1, keeping
the density well behaved.

1.1 Likelihood Model - Known κ, Unknown direction µ

µ ∼ vMF(µ0, κ0) (2)

Observed vectors xi are then generated according to:

xi | µ, κ ∼ vMF(µ, κ) (3)

1.1.1 Posterior on µ
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A valid vMF distribution requires the mean vector to be a unit vector. In general, (κ0µ0 + κ
∑

xi) will not be
a unit vector and we need to explicitly normalize it.
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1.1.2 Marginal Likelihood

p(x | µ0, κ, κ0) =

∫
p(x, µ | µ0, κ, κ0)dµ

From equation 7 we have:∫
p(x, µ | µ0, κ, κ0)dµ =

∫
κ

d
2−1
0 κN( d

2−1)

(2π)
(N)d

2 I d
2−1(κ0)(I d

2−1(κ))
N

I d
2−1(κ̃)

κ̃
d
2−1

κ̃
d
2−1

(2π)(
d
2 )I d

2−1(κ̃)
eκ̃µ̃

Tµdµ

=
κ

d
2−1
0 κN( d

2−1)

(2π)
(N)d

2 I d
2−1(κ0)(I d

2−1(κ))
N

I d
2−1(κ̃)

κ̃
d
2−1

∫
κ̃

d
2−1

(2π)(
d
2 )I d

2−1(κ̃)
eκ̃µ̃

Tµdµ

=
κ

d
2−1
0 κN( d

2−1)

(2π)
(N)d

2 I d
2−1(κ0)(I d

2−1(κ))
N

I d
2−1(κ̃)

κ̃
d
2−1

∫
vMF(µ | µ̃, κ̃)dµ

=
κ

d
2−1
0 κN( d

2−1)

(2π)
(N)d

2 I d
2−1(κ0)(I d

2−1(κ))
N

I d
2−1(κ̃)

κ̃
d
2−1

=
1

(2π)
Nd
2

κ
d
2−1
0 κN( d

2−1)

κ̃
d
2−1

I d
2−1(κ̃)

I d
2−1(κ0)(I d

2−1(κ))
N

2 Video segmentation hyper-parameters.
Appearance features. The color and texture features have three hyper-paramaters each, κ, µ0 and κ0 control-
ling the within segment concentration of features, the mean direction (µ0) and the concentration of segment
directions µzji around µ0 respectively. We set µ0 to the mean direction of the video to be segmented, κ0 was
set to a small value 10−5 encouraging large variance in the segment mean directions. κ controls within seg-
ment precision. Low κ values produces segmentations with large regions while high κ values produce smaller
segments. We used leave one out cross validation to determine the value of κ. We found κ = 20 to work well.

Flow features. The two dimensional flow features are modeled using normal inverse Wishart distributions.
The inverse Wishart parameters n0 and expected covariance S0, were set to 4 and a scaled identity matrix,
s0I2×2. Setting n0 to 4 allows the variance around S0 to be as high as possible while setting E[Σ2×2] = S0, for
Σ ∼ IW(n0, S0). The scaling parameter s0 was picked to match the variance of the observed flow vectors, and
was determined to be 0.25. The mean flow µ0 was set to the vector 0 ∈ R2×1, encoding our intuition that on
average we expect super-pixels to be static. Finally, τ−1

0 was set to a small value 10−10, to allow high variance
around µ0 thus allowing super-pixels to exhibit large motions.
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3 Inference Details
This section adopts the Chinese restaurant terminology and refers to data points as customers, clusters as tables
and components as dishes.

Algorithm 1: Iterative sampling of customer and table links.

for i ∈ 1 . . . N do
c∗,k∗ ←− CustLinkProposal(i,x,k, c, α,D, α0, A

0)
Compute acceptance ratio ρ
With probability ∝ min(1, ρ), accept c,k←− c∗,k∗

for t ∈ T (c) do
kt ∼ p(kt | k−t, c,x, α0, A

0(c)) ; /*Gibbs update kt*/

Algorithm 2: CustLinkProposal

input : i,x,k, c, α,D, α0, A
0

output: k∗, c∗, q.(c
∗,k∗ | k, c)

Ktij = {ks | ks = tij , s ̸= tij} ; /*Set of all table links pointing to ti except
self links.*/
Set ci = i ;
if ci = i causes a split then

split←− TRUE; /*Record the occurrence of a split.*/
k←− ReassignLinks (Ktij )
k∗tj ←− ktij ; /*A split table retains the current table’s link.*/

Propose a new customer link: ci ∼ q(ci)
if ci = j∗ causes a merge then
Ktij∗ = Kti ∪ Ktj∗ and Update k to reflect the merge
if split then /* Split+Merge */

k∗tij∗ ←− ktj∗

qsm(c∗,k∗ | c,k,x) =
(
1

2

)|Ktij
|

q(c∗i )

else /* No split + Merge */
Move kti to the inactive set
k∗tij∗ ←− ktj∗
qm(c∗,k∗ | c,k,x) = q(c∗i )

else
if split then /* Split+No Merge */

Sample k∗ti ∼ p(k∗ti | α0, A
0(c∗),x,k−ti) ;

qs(c
∗,k∗ | c,k,x) =

(
1

2

)|Ktij
|

q(c∗i )p(k
∗
ti | A

0(c∗),x,k−ti)

else /* No Split+No Merge */
/*No change to partition - Do Nothing. */
qnc(c

∗,k∗ | c,k,x) = q(c∗i )

3.1 Acceptance Ratios

Notational details:

1. i is a customer, kti denotes the link of the table containing i.

2. If two tables, one with customer i and another with j are merged, the resulting table is denoted tij and
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Algorithm 3: ReassignLinks
input : Ktij

output: k
/*Reassign links pointing to a split table. Links are assigned to one

of the two split tables. */
for ks ∈ Kti do

bs ∼ Bernoulli(0.5)
if bs = 1 then
Kti = Kti/ks
Ktj = Ktj ∪ ks
ks = tj ;

the corresponding table link is ktij

3. c = {c1, . . . , ci−1, ci = j, . . . , cN}
c∗ = {c1, . . . , ci−1, ci = j∗, . . . , cN} and ci = j∗ is denoted as c∗i

The proposed algorithm changes an existing partition by either

1. Merging existing tables : No new table is created when ci = i and exiting tables are merged after sampling
ci = j∗. The transition probability of this move is:

qm(c∗,k∗ | c,k,x) = q(c∗i ) (8)

2. Or splitting an existing table: A new table is created when ci = i and and no tables are merged after
sampling ci = j∗.

qs(c
∗,k∗ | c,k,x) =

(
1

2

)|Ktij
|

q(c∗i )p(k
∗
ti | A

0(c∗),x,k∗
−ti) (9)

3. Or both merging and splitting tables : A new table is created when ci = i and tables are merged after
sampling ci = j∗.

qsm(c∗,k∗ | c,k,x) =
(
1

2

)|Ktij
|

q(c∗i ) (10)

4. Finally, the move might not change a partition at all: No new table is created when ci = i and no tables
are merged after sampling ci = j∗.

qnc(c
∗,k∗ | c,k,x) = q(c∗i ) (11)

Moves 1 and 4 are reverses of each other, while moves 2 and 3 are their own reverses.
Recall that a proposal is accepted with probability ∝ min(1, ρ), where

ρ =
p(x, c∗,k∗)

p(x, c,k)

qrev(c,k | c∗,k∗,x)

qfwd(c∗,k∗ | c,k,x)
(12)

3.2 Split move

Let us first consider the split move under the prior proposal. The merge move is the reverse of a split move.
Hence we have:

ρs =
p(x, c∗,k∗)

p(x, c,k)

qm(c,k | c∗,k∗,x)

qs(c∗,k∗ | c,k,x)
(13)
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Substituting Equations 9 and 8 above we get:

ρs =
p(x, c∗,k∗)

p(x, c,k)

p(ci = j | α,D)

p(ci = j∗ | α,D)p(k∗ti | A0(c∗),x,k∗
−ti)(0.5)

|Ktij
| (14)

Dropping dependence on α,D,A0 for notational convenience we have:

ρs =
1

(0.5)|Ktij
|
p(c∗)p(k∗ | c∗)p(x | k∗, c∗)

p(c)p(k | c)p(x | k, c)
p(ci = j)

p(ci = j∗)p(k∗ti | x,k
∗
−ti , c

∗)
(15)

The customer links cancel out between the likelihood and hastings ratios:

ρs =
1

(0.5)|Ktij
|
p(k∗ | c∗)p(x | k∗, c∗)

p(k | c)p(x | k, c)
1

p(k∗ti | x,k
∗
−ti , c

∗)
(16)

ρs =
1

(0.5)|Ktij
|
p(k∗ | c∗)p(x | k∗, c∗)

p(k | c)p(x | k, c)
p(x,k∗

−ti , c
∗)

p(x,k∗, c∗)
(17)

ρs =
1

(0.5)|Ktij
|
�����p(k∗ | c∗)((((((p(x | k∗, c∗)

p(k | c)p(x | k, c)
p(x | k∗

−ti , c
∗)p(k∗

−ti | c
∗)���p(c∗)

((((((p(x | k∗, c∗)�����p(k∗ | c∗)���p(c∗)
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ρs =
1

(0.5)|Ktij
|
p(k∗

−ti | c
∗)

p(k | c)
p(x | k∗

−ti , c
∗)

p(x | k, c)
(19)

Note that the number of table links in k = number of table links in k∗
−ti , and depending on the distance between

tables the ratio of table links may be further simplified. For instance, for the intersection over union distance
used in the video segmentation algorithm all but the links of the affected tables cancel out with the above ratio
simplifying to:

p(k∗
−ti | c

∗)

p(k | c)
=

∏
ks∈Ktij

p(k∗s | c∗)∏
ks∈Ktij

p(ks | c)
(20)

Similarly, likelihood terms of dishes not affected by the split cancel out. If the two tables serve different dishes
we have

p(x | k∗
−ti , c

∗)

p(x | k, c)
=

p(xz=zj | k∗
−ti , c

∗, λ)p(xz=zj∗ | k∗
−ti , c

∗, λ)

p(xz=zi | k, c, λ)
(21)

where xz=zj refers to all customers sharing a dish with j. Note that since in the pre spilt state the i and j are
sitting at the same table, {xz=zj | c,k} = {xz=zi | c,k}, but {xz=zj | c∗,k∗} may not equal {xz=zi | c∗,k∗}
in the new split state. If the two tables do serve the same dish we have:

p(x | k∗
−ti , c

∗)

p(x | k, c)
=

p(xz=zi | k∗
−ti , c

∗, λ)

p(xz=zi | k, c, λ)
(22)

Note that due to the missing kti link in the numerator the two sets of customers in general will not be the same.

Pseudo Gibbs Proposals. Recall that we sample the customer link from the following proposal distribution:

q(c∗i ) ∝ p(c∗i | α,D)Γ(x, z, λ), (23)

where

Γ(x, z, λ) =


p(xz(∆)=ma

∪ xz(∆)=mb
| λ)

p(xz(∆)=ma
| λ)p(xz(∆)=mb

| λ)
if c∗i merges dishes ma and mb

p(c∗i | α,D) otherwise,
(24)

where ∆ = {c−i, kti = ti,k−ti} and k−ti represents the set of all table links excluding kti .
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Split move acceptance ratio for pseudo Gibbs proposals First, observe that when a particular link proposal
doesn’t cause two dishes to merge (either because it doesn’t merge tables or because it merges two tables serving
the same dish) the prior proposal and the pseudo Gibbs proposals are identical. This implies that when a split
is proposed that splits a table but not a dish the pseudo Gibbs acceptance ratio is equal to the prior proposal
acceptance ratio given in Equation (19).

Now let us consider the case when the proposed customer link causes dishes to be split. The reverse move
must then cause two distinct dishes (ma and mb) to be merged. Thus the reverse transition probability is:

qm(c,k | c∗,k∗,x) =
1

Ci
p(ci = j | α,D)

p(xma ∪ xmb
| λ)

p(xma
| λ)p(xmb

| λ)
, (25)

where Ci is the appropriate normalization constant for the discrete pseudo Gibbs proposal. Under, the pseudo

Gibbs proposal, the probability of a link that doesn’t cause a merge of dishes is given by
1

Ci
p(ci = j∗ |

α,D) which is then combined with the probability of sampling a new table link to give the forward transition
probability for the split move:

qs(c
∗,k∗ | c,k,x) = (0.5)|Ktij

| 1

Ci
p(ci = j∗ | α,D)p(k∗ti | A

0(c∗),x,k−ti) (26)

Plugging these values in Equation (12) leads to the following ratio:

ηs =
1

(0.5)|Ktij
|
p(k∗

−ti | c
∗)

p(k | c)
(27)

Finally the acceptance ratio for the split move under the pseudo Gibbs proposal is:

ρpgs =

{
ρs if the split tables share the same dish
ηs otherwise

(28)

where ηs is Merge move ratios are analogously computed.

3.3 Split+Merge moves

These moves allow for customers to shift between tables. The acceptance ratio for the prior proposal works out
to

ρsm =

(
1

2

)|Ktij∗ |−|Ktij
|
p(k∗ | c∗)p(x | k∗, c∗)

p(k | c)p(x | k, c)
(29)

again with table links and likelihood terms not affected by the move canceling out. The pseudo Gibbs acceptance
ratio works out to a simple ratio of table links:

ρpgsm =

(
1

2

)|Ktij∗ |−|Ktij
|
p(k∗ | c∗)
p(k | c)

(30)

Finally, moves which change customer links but do not cause a change to the partition structure have accep-
tance ratios of 1 and are always accepted under either proposals.
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